您现在的位置是:首页 > 业界业界

腾讯AI Lab“绝悟”首次将强化学习引入病理全片扫描,阅片效率提升400%

查看 cc博主 的更多文章cc博主2022-12-19【业界】335人已围观

12月19日,腾讯AI Lab发布其决策智能 AI 「绝悟」的最新成果「绝悟RLogist」,将游戏场景中训练的 AI 深度强化学习技术迁移到病理全片扫描图像诊断领域,在性能接近的情况下,将传统病理阅片效率提升400%。

该研究相关论文被国际人工智能顶级学术会议 「AAAI 2023」接收,代码已开源。

「绝悟」AI 是腾讯将游戏场景与人工智能技术进行融合研究的核心探索之一,此前先后在 MOBA、RTS、3D开放世界(Minecraft)等多类型游戏中取得了业界领先的研究成果,证明了其在游戏复杂环境中较为优秀的决策智能水平。

本次发布的「绝悟RLogist」受启发于「绝悟」在3D游戏环境中进行观测并做出决策的过程,将这些能力迁移至病理阅片场景,提出了基于深度强化学习找寻最优看片路径的方法,并在相关测试数据集中表现出较高的效率,达到业界领先水平。这也代表着「绝悟」成功从游戏场景走向现实世界,朝着解决更多现实世界难题的目标更近了一步。

随着技术发展,目前,病理行业正在加速向全数字化、智能化、云端化方向发展,临床科室常常将组织切片进行全片扫描数字化处理,以便医生阅片及管理。

数据显示,显微扫描仪生成的高分辨率图像往往能够达到每个像素0.25微米,每张图像的尺寸经常是几万乘几万像素甚至更高,虽然这能更全面地展现切片信息,却也给医生的阅片带来了更大的压力,他们要从布满密集细胞和组织的超大尺寸图像中,肉眼找到风险的病灶位置并进行判断,“大海捞针”式的工作难度可想而知。

腾讯AI Lab“绝悟”首次将强化学习引入病理全片扫描,阅片效率提升400% 第1张

在高清病理图像中,病灶区域可能仅占很小的比例

此前,研究员尝试使用深度学习解决图像/像素级分类和回归问题,在这一方向上取得了不少成果。但是,深度学习的方法在这一方向的应用仍然具有挑战性,主要体现在诊断相关性弱、数据效率低下等问题。

实际上,病理医生在对切片进行判读时,并不需要像这些计算机算法这样去观察高倍镜下的每一个角落。病理医生往往先利用显微镜在低倍镜下进行扫片,在高倍镜下确认相关区域,必要时可以灵活切换不同倍镜进行复核,根据经验决策最优的查看路径,以最终完成全片判读并定位到关键病灶。

腾讯AI Lab“绝悟”首次将强化学习引入病理全片扫描,阅片效率提升400% 第2张

人类医生会凭经验放大图像,检查可疑区域

「绝悟」团队观察到,病理医生的阅片行为,可以转化为最优路径决策问题,而解决这类问题正是强化学习所擅长的方向。以「绝悟」在Minecraft环境中完成挖木头任务为例,AI首先要环顾四周搜集全局信息(类比病理医生在低倍镜下扫片),然后锁定视角(高倍镜确认),找到木头后执行采集动作(确认病灶),如此往复。

受此启发,「绝悟RLogist」创新性的尝试了一种类似医生病理阅片的决策思路,采用了基于深度强化学习的,找寻最优看片路径的方法,避免了用传统的穷举方式去分析局部图像切块,而是先决策找到有观察价值的区域,并通过跨多个分辨率级别获得代表性特征,以加速完成全片判读。

实验结果表明,与典型的多实例学习算法相比,「绝悟RLogist」在观察路径显著变短情况下,能够实现接近的分类表现,决策效率提升400%。同时,该方法具体较好的可解释性。通过将RLogist的决策过程可视化,有潜力应用于教育性或者辅助性的医疗诊断场景。

腾讯AI Lab作为AI游戏研究先行者,其自主研发的深度强化学习智能体正不断走近现实。除了「绝悟」,此前推出的棋牌游戏 AI 「绝艺」在担任国家围棋队训练专用AI同时,逐步拓展麻将等非完全信息类博弈能力。

同时,基于对强化学习技术前景的关注,实验室正积极促进强化学习领域的共同发展。2019年,腾讯AI Lab与王者荣耀共同发布AI开放研究平台「开悟」,过去三年已通过「以赛促研」助力高校AI人才培养。11月21日,平台发布「王者荣耀AI开放研究环境」,为非商业用途的机器学习算法研究公开提供业界独有的高复杂度MOBA训练环境,助力前沿探索。

未来,腾讯AI Lab将与学界、业界携手,共同利用游戏环境不断提升AI能力,并寻找 AI 技术解决更多问题的可能性,在现实领域发挥更大作用。

雷峰网版权文章,未经授权禁止转载。详情见转载须知。

Tags:

文章评论

加入组织
广告

   有免费节点资源,我们会通知你!  加入纸飞机订阅群  

×
天气预报查看日历分享网页电报扫码留言评论Telegram