您现在的位置是:首页 > 芯片芯片
AI芯片创业公司们走到分岔口
cc博主2022-01-25【芯片】496人已围观
距离2016年左右的AI芯片创业热潮已经过去五年多,从团队组建,到芯片设计、再到产品落地,AI芯片公司们到了交出一份答卷的时间。
Graphcore大中华区总裁兼全球首席营收官卢涛
Graphcore大中华区总裁兼全球首席营收官卢涛对雷峰网(公众号:雷峰网)表示,“2022年AI芯片公司的竞争会更加激烈,因为不同的公司选择了不同的策略和路径,今年开始能看得更加清晰。”
实际上,从2020年开始,大部分AI芯片公司都开启了芯片的落地,然而由于AI芯片与传统芯片有明显的差别,芯片提供者与使用者之间的认知差异,加上疫情的影响,和全球蔓延的缺芯潮,AI芯片的落地和大规模使用面临重重挑战。
2021年,业界更加关注AI的部署,包括对机器学习框架的关注,支持的模型,以及集群的管理和调度管理。
想要成为AI芯片的佼佼者,有哪三个秘诀?
AI芯片公司面前的七个台阶
AI热潮催生了大量的芯片初创公司,初创公司要成功落地全新类型的AI芯片,挑战当前巨头,可以以攀登珠穆朗玛峰来比喻。
卢涛认为,如果今天的巨头在珠穆朗玛峰上,想要达到巨头的高度,需要攀登七个台阶。
第一个台阶是组建团队,第二个台阶是宣讲理念,第三个台阶是设计出芯片,第四个台阶是有芯片且能给客户送样品做测试,第五个台阶是有产品有落地,第六个台阶是有产品,有很多落地的,第七个台阶是有很大的市场份额。卢涛认为Graphcore处于第五到第六个台阶间。
处于这个阶段的公司,表明其已经解决了许多技术挑战。AI计算与传统的CPU有显著的差别,过去5-10年间,CPU的应用都十分明确,比如Web服务、数据库服务、存储服务等。但AI整体面向的应用有许多创新和研究,整体呈高度动态化。
在这样的情况下,AI芯片的落地更显艰难,步骤大致可以分为三个,首先,要用AI芯片的性能优势吸引客户,接下来客户会考虑软件移植的难度以及时间,在历经验证之后,才能实现大规模部署。
这个过程可以说是漫长而又挑战重重。其中一个非常大的挑战就是AI芯片提供者和使用者之间认知的差异。“从我们的角度而言,虽然这种认知的差异有所改善,但挑战仍然持续存在。”卢涛说,“比如,不少用户可能觉得我们的IPU性能表现好,并想能在不修改代码的情况下迁移到IPU,这就需要我们在软件和生态方面做大量的工作。”
AI软件和生态的建设,要求对某个具体的应用领域有比较完整的认知,实现整个业务端到端的配合,不仅仅是AI,还包括AI芯片与其它设备、系统的配合,运维管理等。
卢涛指出,“作为计算平台的提供者,要让最终用户把我们的平台用好,生态非常重要,生态建设能够降低用户的使用门槛。同时,垂直案例也非常重要,通过‘打样板’,能够显著加速在某一行业的应用。当然,加强与AI平台厂商的合作同样关键。AI领域有两种用户,一种是AI开发者,有了案例就可以做相应的开发,还有一种是AI平台型企业,他们可以把AI技术封装以提供给其他人员使用。”
对于有计算机背景的开发者或研究员,他们可以基于TensorFlow、PyTorch和百度飞桨等进行编程,如果不具备这个能力,就需要借助更高级的框架,比如Hugging Face来降低开发门槛,简化开发。这两者的开发难度有显著差别,如果用PyTorch实现一个业务,可能需要两百行代码,但采用Hugging Face,可能用50行代码就可以完成。
成为AI芯片领先者的三个关键
不难发现,想要实现AI芯片的大规模落地,减小AI芯片提供者和使用者之间的认知差是关键,这其中的关键又是软件和生态的建设。
但要成为AI芯片领域的领导者,卢涛认为有三个关键:预判+冒一点风险+一点运气。
“Graphcore在2016年成立时,只能追赶。对于新的领域,如果能提前预判,就可能在领域里具备领先性。”卢涛具体解释。
2016年,传统的机器视觉模型ResNet已经存在,这时候Graphcore需要追赶,作为追赶者需要做一些预判发现机会。2020年,Graphcore关注到了Transformer技术,这种技术本来是用于自然语言处理的底层技术,但业界出现了用Transformer做计算视觉的趋势,Graphcore率先开始支持。
到2021年下半年,一些基于Transformer的视觉模型,比如ViT成为了热门。由于有提前的预判,Graphcore对于新的基于Transformer的视觉模型以及GNN都有很好的支持,很多创新和前沿的模型比GPU支持得更好。
正是凭借着创新的IPU硬件和不断完善的Poplar软件生态,Graphcore在2021年有不少应用案例。在2021年下半年,安捷数科利用IPU进行气象预测、精准灌溉、防灾减灾。深势科技完成分子动力学模拟软件DeePMD-kit向IPU硬件的迁移,探索基于分子动力学模拟的科学计算、药物设计、材料设计和新型能源等场景。
在金融保险领域,牛津-英仕曼用IPU进行股价预测;Tractable与Graphcore达成合作,加速事故和灾害恢复。电信方面,Graphcore与韩国电信合作发布了IPU云。在城市环境可持续发展领域,升哲科技基于IPU进行城市相关可持续发展方面的应用。在医疗、生命科学领域,Graphcore与斯坦福大学医学院合作,使用IPU以“医疗+隐私计算”为核心方向进行了一些研究和探索。
但这些应用案例多为前沿技术和应用的探索,不是大规模的商业应用。对此卢涛表示,“商业领域内,我们有一些大规模应用的客户,他们更关注于自身业务给客户带来的价值,很少和技术厂商一同发布新闻。前沿的研究更加开放,研究者也希望结果能让更多人看到,自然会有更多可以分享的案例。”
他也同时透露,2022年,Graphcore会有一些和国内公有云厂商的IPU产品发布,也会有新的硬件产品的发布。Graphcore也会在一些相关的AI应用领域中会进一步加深合作,比如AI辅助科研、自动驾驶等是他们2022年在AI应用或垂直领域中比较重要的方向。
值得一提的是,Graphcore的IPU与CPU的硬件解耦,有助于IPU更好的拓展市场。比如在BERT训练中,Graphcore采用一台2颗CPU的服务器和64颗IPU,比例为1:32,在计算机视觉模型中的比例则基本为1:8。但如果是英伟达或者英特尔的系统,无论何种场景和模型,都会有一个固定的CPU和GPU比例,比如1:4或1:2。
写在最后
AI芯片的竞争最终依旧会演变为生态、商业的竞争。在AI芯片的早期阶段,虽然参与者众多,但各自都在团队组建和产品开发的阶段,AI芯片公司间并没有真正的竞争关系。随着AI芯片的发布,以及落地的推进,AI芯片公司之间的竞争才真正开始。
当越来越多的领域和客户开始关注AI的规模应用和落地时,自然会加剧AI芯片公司之间的竞争,这时候,已经不再单纯比拼硬件性能,软件和生态才更能打动最终用户。
2022年,我们将看到AI芯片公司间的竞争日趋激烈,我们也将慢慢看到AI芯片公司们真正的实力。雷峰网
相关文章
- 互联网大厂的春晚红包“后遗症”
- 八平台直播,首日累计93万次观看,安天网络安全冬训营进行时……
- 中国电子云发力“云原生存储”赛道
- 佳能撤离裁员发放巨额赔偿:有员工拿到150万补偿,被指故意拉高国内企业补偿标准;阿里回应优酷股东变更;途虎养车赴港上市|雷峰早报
- 最新免费SS/SSR节点分享-永久V2RAY节点每日更新(2022/01/24)
- 用Transformer做线代作业,真香!
- MIT陈刚“有罪指控”被撤销,美司法部:他从未向政府或其他人撒谎
- 用于形状精确三维感知图像合成的着色引导生成隐式模型 | NeurIPS2021
- 时隔40年,斯坦福大学吴佳俊再译马尔代表作《视觉》:一场超越时空的对话
- 平安科技前沿技术部门负责人王磊:大规模预训练模型在垂直领域应用的缺陷与改进
猜你喜欢
Cocos 出席 WAIC:元生无界,线上线下共享“云展会”
业界2022 年 9 月 1-3 日,由国家发展和改革委员会、工业和信息化部、科学技术部、国家互联网信息办公室、中国科学院、中国工程院、中国科学技术协会和上海市人民政府共同主办的 2022 世界人工智能大会(WAIC)将隆重举行,大会围绕“人类、科技、产业、城市、...
阅读更多2022年7月最新免费v2ray节点账号分享-永久ssr节点-每日更新(7/30)
技术好文今日星期六,为大家提供2022年免费最新免费v2ray节点账号分享-永久ssr节点-每日更新,更新于2022年7月30日17点更新,最新v2ray节点分享。需要付费节点下方推荐点击v2rayn出门右拐即可,周末更新资源部分可用,免费资源不易,请大家珍惜。CC博...
阅读更多后浪云:香港免费服务器 E3 16G 240SSD 10M带宽 3IP
服务器评测当能收费的东西都收费了,这个世界也就到处是禁区了。—《后浪云idc.NET》如果有人一直在寻觅香港免费服务器,不是说明TA爱贪小便宜,可能只是穷时还拥有理想,可能只是TA不信任这个商品社会,可能只是TA人缘不好,不擅长和人称兄道弟,没有那样的资源。后浪云的...
阅读更多AI 正在引领一场新型科学革命
人工智能作者 | Bryan McMahon编译 | bluemin编辑 | 陈彩娴自20世纪50年代DNA被发现以来,生物学家一直试图将基因序列的长度与一系列细胞成分和蛋白质合成过程联系起来,例如,包括为现在著名的mRNA疫苗助力的特定抗体的mRNA转录过程。...
阅读更多康奈尔计算学院院长Kavita Bala:「元宇宙」算什么?上帝之眼或将通过 AI 诞生
人工智能在今年斯坦福HAI实验室的春季会议上,康奈尔计算机学院院长Kavita Bala以“视觉外观和理解:从微米分辨率到世界级”为题,就她在数字化现实世界方面的研究进行了精彩的演讲。编译|王玥编辑|陈彩娴这几年我的研究主要关注视觉外观和理解,从微米分辨率到世界级...
阅读更多