您现在的位置是:首页 > 人工智能人工智能
PNAS新研究:剑桥学者发现,有些 AI 模型无法被计算
cc博主2022-04-08【人工智能】576人已围观
编辑 | 陈彩娴
近日,剑桥学者在《美国科学院院报》(PNAS)上发表了一篇名为“The Difficulty of Computing Stable and Accurate Neural Networks: On the Barriers of Deep Learning and Smale's 18th Problem”的文章,提出了一个有趣的发现:
研究者可以证明存在具有良好近似质量的神经网络,但不一定存在能够训练(或计算)这类神经网络的算法。
论文地址:http://www.damtp.cam.ac.uk/user/mjc249/pdfs/PNAS_Stable_Accurate_NN.pdf
这与图灵的观点相似:无论计算能力和运行时间如何,计算机都可能无法解决一些问题。也就是说,哪怕再优秀的神经网络,也可能无法对现实世界进行准确的描述。
不过,这并不表明所有的神经网络都是有缺陷的,而是它们仅仅在特定情况下才能达到稳定和准确的状态。
研究团队通过引入一个经典逆问题,提出了一个分类理论,用来描述哪些神经网络可以通过算法进行计算,对「人工智能可以做什么和不可以做什么」这一历史性问题给出了一个新的答案。
同时,他们开发了一个新的模型——「快速迭代重启网络」(FIRENETs),能够在应用场景中同时保证神经网络的稳定性和准确性。一方面,FIRENETs 所计算的神经网络在对抗扰动方面具有稳定性,还能够将不稳定的神经网络变得稳定;另一方面,它在保持稳定性的前提下还取得了高性能和低漏报率。
以下是对该工作的简单介绍:
研究背景
深度学习 (DL) 取得了前所未有的成功,现在正全力进入科学计算领域。然而,尽管通用的逼近特性可以保证稳定的神经网络 (NN) 的存在,但当前的深度学习方法往往存在不稳定性。这个问题使得深度学习在现实生活中的落地充满危险。
比方说,Facebook(Meta)和纽约大学于2019年的 FastMRI 挑战赛中曾称,在标准图像质量指标方面表现良好的网络容易出现漏报,无法重建微小但具有物理相关性的图像异常。2020年 FastMRI 挑战赛将重点放在病理上,又指出:「这种虚幻的特征是不可接受的,尤其如果它们模拟的是正常结构,而这些结构要么不存在,要么实际上是异常的,那就非常有问题。正如对抗扰动研究所证明的,神经网络模型可能是不稳定的」。显微镜学中也存在类似的例子。
在不同的应用场景中,对误报率和漏报率的容忍度是不同的。对于具有高错误分析成本的场景,必须避免这种误报和漏报。因此,在医疗诊断等应用场景中,人工智能的「幻觉」可能存在非常严重的危险。
对于该问题,经典的近似定理表明,连续函数可以用神经网络很好地任意逼近。因此,用稳定函数描述的稳定问题往往可以用神经网络稳定地解决。这就产生了这样一个基础性问题:
为什么有些场景已被证明存在稳定、准确的神经网络,深度学习还会出现不稳定的方法和由 AI 生成的「幻觉」?
为了回答这个问题,研究者们启动了研究,希望确定深度学习在逆问题中所能达到的极限。
此外,深度学习中的神经网络还存在稳定性和准确性的权衡问题。稳定性差是现代人工智能的致命弱点,这方面也有一个悖论:尽管存在稳定的神经网络,但训练算法仍能发现不稳定的神经网络。这个基础性问题与Steven Smale 在1998年就人工智能极限提出的第18个数学问题有关。
计算稳定的神经网络并不困难,例如,零网络就是稳定的,但它准确度不高,因而不是特别有用。最大的问题是:如何计算既稳定又准确的神经网络?科学计算本身基于稳定性和准确性,然而,两者之间往往存在取舍,有时必须牺牲准确性以确保稳定性。
分类理论:计算稳定NN的算法的存在条件
针对上述问题,作者团队提出了一种分类理论,描述了达到一定准确度(且稳定)的神经网络可以被算法计算的充分条件。
他们从一个线性方程组欠定系统的经典逆问题出发:
在这里,A∈Cm ×N 表示采样模型(m < N),比如 MRI 中的下采样离散傅里叶变换,x表示未知量。矢量 e 对噪声或扰动进行建模。该方程 1 所展示的问题是许多逆问题和图像分析的基础。
基于定理1和定理2(定理详情见论文),他们指出这样一个悖论性问题:
存在从训练数据到合适的神经网络的映射,但没有训练算法(即使是随机的算法)可以从训练数据中计算神经网络的近似值。
对此,该论文的其中一位作者Hansen做了一个类比:「可能存在一种蛋糕,但却不存在制作它的配方」。他认为,问题不在于「配方」,而是在于制作蛋糕所必须的「工具」,有可能无论你使用什么搅拌机,都无法制作出想要的蛋糕,但在某些情况下,也有可能你自家厨房里的搅拌机就足够了。
那么是在什么情况下呢?研究团队对计算神经网络的算法进行了分类,解释了什么条件下计算神经网络的算法才会存在(这也可以类比为:哪些蛋糕可以用具有物理设计可能性的搅拌机来制作):
定理2
计算神经网络的算法是否存在取决于期望的精度。对于任意正整数 K > 2 和 L,存在良态问题类,同时有以下情况:
a)不存在随机训练算法(即便是随机的算法)能以超过 50% 的概率计算出具有 K 位精度的神经网络;
b)存在一种确定的训练算法,可以计算具有 K-1 位精度的神经网络,但需要大量的训练数据;
c)存在一种确定的训练算法,可以使用不超过 L 个训练样本计算具有 K-2 位精度的神经网络。
这表明,一些基础性的、本质性的障碍阻止了神经网络被算法计算。这也是为什么一些场景中存在稳定而准确的神经网络,但深度学习仍会出现「幻觉」的原因。
FIRENETs:平衡稳定性与准确性
神经网络的稳定性与准确性之间存在权衡问题,一个稳定的神经网络在逆问题中的性能表现往往是有限的。这在图像重建中尤其突出,当前深度学习重建图像的方法会出现不稳定性,这体现在:
1)在图像或抽样域中的一个微小扰动就可能在重建图像中产生严重的伪影;
2)图像域中的一个微小细节可能会在重建图像中被洗掉(缺乏准确性),导致潜在的漏报。
这类线性逆问题导致深度学习方法在稳定性与准确性之间的不平衡,使得任何图像重建方法都无法在不牺牲准确性的情况下保持较高的稳定性,反之亦然。
为了解决这个问题,研究团队引入一种「快速迭代重启网络」(FIRENETs)。经证明与数值验证,FIRENETs 十分稳定。他们发现:在特定条件下,比如在 MRI中 ,有一些算法可以为方程1中的问题计算稳定的神经网络。
关键是,他们证明了 FIRENETs 对扰动具有鲁棒性,甚至可用来使不稳定的神经网络变得稳定。
FIRENETs对扰动具有鲁棒性
在稳定性测试中,团队将 FIRENETs 与V. Antun等人(2020)开发的AUTOMAP网络进行对比。如下图中的上行所示,AUTOMAP网络重建很不稳定,导致图像完全变形。下行则是使用FIRENETs网络的重建结果。即使在最差的重建结果中,它仍然保持稳定。
这证明了由FIRENETs算法所计算的神经网络在小波中稀疏的图像中,在对抗扰动方面具有稳定性,而且同时能够维持一定的准确性。
FIRENETs的稳定器作用
同时,FIRENETs也起到了一个稳定器的作用。比如在下图中,将来自AUTOMAP的重建输入到FIRENETs,结果显示,FIRENETs修正了AUTOMAP的输出并将重建加以稳定化。
图注:在AUTOMAP 的末端添加一些FIRENET层使其稳定。最左边是AUTOMAP的重建。左二是x0 = Ψ( ̃y)的FIRENET 的重建。右二是 ̃y = Ax + e3时FIRENET 的重建。最右边是输入AUTOMAP 的测量值后FIRENET的重建。
FIRENETs兼具稳定性与准确性
在下图中,一个在包含椭圆形状的图像上训练的 U-Net 很稳定,但是,当添加一个原先不包含在训练集中的细节后,U-Net 的稳定性就会受到极大影响。
图注:性能有限的神经网络经过训练是可以具有稳定性的。考虑三个重建网络Φj : Cm → CN , j = 1, 2, 3。对于每一个网络,计算一个扰动值wj∈CN,旨在模拟最坏的效果,并在左列展示了一个经裁剪的摄动图像x + wj (第二至四行)。中间一列(第二至四行)显示了每一个网络的重建图像 Φj(A(x + wj))。在右列,以“Can u see it?”的文本形式测试了网络对微小细节h1的重建能力。
可以看到,在有噪声测量值条件下训练的网络对于最坏情况下的扰动保持稳定,但并不准确。相反,无噪声训练的网络是准确的,但不稳定。而FIRENET实现了二者的平衡,对于小波稀疏且在最坏情况下的稳定图像来说,它仍是准确的。
但这并不是故事的结局,在现实生活中的应用场景中,找出稳定性与精度之间的最优权衡是最重要的,这无疑需要无数种不同的技术来解决不同的问题和稳定性误差。
参考链接:https://spectrum.ieee.org/deep-neural-networkhttp://www.damtp.cam.ac.uk/user/mjc249/pdfs/PNAS_Stable_Accurate_NN.pdfhttps://www.pnas.org/doi/full/10.1073/pnas.2107151119雷峰网(公众号:雷峰网)
雷峰网版权文章,未经授权禁止转载。详情见转载须知。
相关文章
- 实测报告:深信服超融合承载Oracle性能领先
- 粘合万种芯片的「万能胶」,是摩尔定律的续命丹吗?
- 退出「出行」江湖五年后,易到创始人周航重回行业一线:出任曹操出行董事长,吉利元老已撤出公司运营
- 蚂蚁集团安全科技eKYC产品通过全球"最严"数据安全审计 已在海外服务上亿人
- MLPerf最新榜单公布,宁畅狂揽59项第一
- 网站内容页链接该怎么做(分享实用且有效的网站seo内容页链接设置方法)
- 蔚来自动驾驶一核心人物离职,其团队也被打散重整,公司内部几经动荡、高管不断轮换
- 阿里李飞飞:在云计算时代,云原生数据库变得越来越重要
- Yann LeCun最新访谈:能量模型是通向自主人工智能系统的起点
- 一键管理15万平方大棚 浙江诸暨这家生态园是如何做到的?
猜你喜欢
添加和使用最新的推特ssr节点_v2ray/clash免费节点机场链接分享(2023/7/24)
技术好文在数字化时代,社交媒体平台对于信息传播和社交互动起着举足轻重的作用。推特(Twitter)作为全球最受欢迎的社交媒体之一,为用户提供了即时信息分享和全球话题讨论的平台。然而,由于地域封锁和网络限制,有时候我们可能无法访问推特。幸运的是,通过配置推特节点,你...
阅读更多【港科大(广州)褚晓文分享】助力医疗诊断的AutoML距离临床应用还有多远?
业界IEEE x ATECIEEE x ATEC科技思享会是由专业技术学会IEEE与前沿科技探索社区ATEC联合主办的技术沙龙。邀请行业专家学者分享前沿探索和技术实践,助力数字化发展。随AI技术的不断深入发展,医学人工智能应用如雨后春笋般迅速涌现,在医疗领域遍...
阅读更多【武汉大学王骞分享】从数据视角看,如何安全地实现更好的AI
业界IEEE x ATECIEEE x ATEC科技思享会是由专业技术学会IEEE与前沿科技探索社区ATEC联合主办的技术沙龙。邀请行业专家学者分享前沿探索和技术实践,助力数字化发展。在社会数字化进程中,随着网络化、智能化服务的不断深入,伴随服务衍生出的各类风...
阅读更多男性功能障碍中药治疗
健康问答在现代生活中,治疗男性功能障碍的药物也越来越多了,但是有些人还是喜欢选择中药进行相关治疗,因为他们觉得中华文化传承的中医文化博大精深,且副作用也不多,更有利于人们的健康,那么男性功能障碍中药治疗方法有哪些呢?下面我们就来一起听听这方面专家的意见。1、淫羊藿...
阅读更多性功能障碍如何治
健康问答性功能障碍如何治疗呢,在许多男科疾病中,性功能障碍是对比多见的并且关于男性的健康危害是对比深的一种男科疾病,假如男性兄弟不小心患上了性功能障碍的话,一定要尽早就医,由于这种疾病得不到有效医治的话,就会恶化开展,下面我们就来具体看看性功能障碍的治疗吧。性功能...
阅读更多
热评文章
长期免费ssr节点机场分享-永久v2ray节点梯子周末更新(2024/11/16)
「11月18日」2024年V2ray/Clash/SSR/Shadowrocke泰国-新加坡免费节点
清华大学获X-Embodiment最佳论文奖,机器人顶会CoRL 2024获奖名单出炉
咨询公司创始人:台积电领先英特尔主要是经济问题而非技术问题
关于iPhone梯子能连接但是上不去网的信息
旧手机搭建linux服务器怎么弄_旧手机搭建linux服务器怎么弄出来
telegream中文版下载电脑_安卓手机telegreat下载教程
海外梯子加速器怎么用的_海外梯子加速器怎么用的啊
电报是什么时候发明的_电报是什么时候发明的谁发明的
安卓加速器推荐_安卓加速器软件下载